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Abstract

We examine the growth and decay of transverse acceleration waves on a nonlinear string whose motion takes place in a

resisting medium. It is shown that one effect of external damping is to increase, with respect to the undamped case, the rate

at which growth/decay of the wave’s amplitude takes place. In addition, the effects of the string’s initial velocity are

examined, a stability analysis is carried out, and a series of numerical simulations of acceleration waves on a finite string

are presented.

Published by Elsevier Ltd.
1. Introduction

The study of what is referred to today as singular surfaces [1,2], i.e., wavefronts, across which some physical
quantity of interest suffers a jump discontinuity, can be traced back to the 1848 paper by Stokes entitled ‘‘On a
difficulty in the theory of sound’’ (see, e.g., the book by Johnson and Cheret [3]). What is most interesting
about such waves, in particular the subclass known as acceleration waves [4], is the fact that under certain
conditions, the jump amplitude can exhibit finite-time blow-up, also known as gradient catastrophe’’ [5] in the
mathematical literature, even when the initial data are smooth. It is now generally thought that the blow-up of
a transverse acceleration wave’s amplitude implies the formation of a vortex sheet,1 i.e., a propagating jump in
the velocity component parallel to the wavefront [1,2,6]. However, as Coleman and Gurtin [7] have pointed
out, there is no general mathematical proof of this conjecture; see, however, Fu and Scott [8], as well as the
references therein.

The study of acceleration waves has been, and remains, a topic of great interest in many areas of the
physical sciences. This is especially true in the field of continuum mechanics, where numerous works detailing
cases of finite-time blow-up appear in the literature (see, e.g., Refs. [2,4,6–16] and those therein).

In the present paper, we examine the evolution of acceleration waves that can arise on a one-dimensional
(1D) string that is executing finite-amplitude, transverse vibrations in a resisting medium. This study, which
generalizes that of Jordan and Puri [13] to include the effects of external damping, employs both analytical and
ee front matter Published by Elsevier Ltd.
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of a longitudinal acceleration wave’s amplitude is thought to imply the formation of a shock wave, i.e. a propagating jump

component perpendicular to the wavefront [4].
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numerical methods and shows that the primary effect of external damping is, in addition to causing
attenuation of the solution profile, to increase the rate at which growth/decay of the acceleration wave’s
amplitude takes place. Additionally, the important role played by the string’s initial velocity in determining if
finite-time blow-up will occur is investigated.

To this end, the present article is arranged as follows. In Section 2, the equation of motion is derived. In
Section 3, expressions for the acceleration wave’s speed and amplitude are analytically determined using
singular surface theory. Then, in Section 4, numerical simulations are presented to illustrate the analytical
findings. Lastly, in Section 5, results are summarized, followed by the Appendix, wherein (jump) amplitude
stability is discussed.

2. Equation of motion

Consider a homogeneous, elastic string of constant cross-sectional area A0, which is the cross-sectional area in
the undeformed configuration, that is executing transverse vibrations in a resisting medium, wherein the drag force
is proportional to the string’s velocity. Taking the x-coordinate of a (Cartesian) coordinate system along the length
of the string and denoting the z-component of the displacement vector by u, let us assume that the motion of the
string is confined to the xz-plane; i.e., the displacement vector of the string depends only on x and (time) t and its
y-component is identically zero. If we also assume, as is typical in such problems, that t5EA0, where t denotes the
tension and the positive constant E is Young’s modulus, then longitudinal inertial effects are, in general, negligibly
small; see [17, Section 3]. Consequently, the tension can be expressed in terms of ux via Hooke’s law [18,19]

t ¼ t0 � EA0½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðuxÞ

2

q
�, (1)

where the positive constant t0 is the tension in the undisturbed string and x and/or t subscripts denote partial
differentiation.

Applying Newton’s second law to any element of string yields

r0utt ¼ ðt sin yÞx � Kut, (2)

where the product t sin y gives the vertical component of the tension, the positive constants r0 and K denote
the mass per unit length of the string in the undeformed configuration and the damping coefficient,
respectively, and y denotes the inclination of the tangent at any point on the string.

If we further assume that juxj51, then Eq. (1) and sin y can be approximated by t � t0 þ 1
2
EA0ðuxÞ

2 and
sin y � ux½1�

1
2ðuxÞ

2
�. Consequently,

t sin y ¼
tuxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðuxÞ
2

q � t0ux½1þ bðuxÞ
2
�. (3)

Here, we have replaced 1
2
ðt�10 EA0 � 1Þ with b, where b ¼ 1

2
t�10 EA0, since EA0bt implies EA0bt0 [17].

Substituting Eq. (3) into Eq. (2) yields, after simplifying, the equation of motion

utt þ ðK=r0Þut � c20uxx ¼ c20b½ðuxÞ
3
�x, (4)

where c0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
t0=r0

p
is the speed of shear waves according to the linear theory.

Since we are mainly interested in the behavior of the string at, and in the immediate vicinity of, an
acceleration wave, let us now recast the equation of motion in terms of v, the z-component of v, where
v ¼ ð0; 0; vðx; tÞÞ denotes the velocity vector. To this end, we first apply q=qt to Eq. (4) and then make use of the
fact that v ¼ ut to obtain

vtt þ ðK=r0Þvt � c20vxx ¼ 3c20b½ðuxÞ
2vx�x. (5)

Employing next the wavefront approximation ux � �c�10 v, which is also known as the ‘‘linear-impedance
assumption’’ in the context of acoustics (see, e.g., Ref. [14] and those therein), to eliminate ux, we find that in
terms of v, the equation of motion becomes

vtt þ ðK=r0Þvt � c20vxx ¼ 3bðv2vxÞx. (6)
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Introducing the following nondimensional variables: v0 ¼ v=v0, x0 ¼ x=‘, and t0 ¼ tðc0=‘Þ, where the positive
constants v0 and ‘, respectively, denote a characteristic speed and length, Eq. (6) is reduced to

vtt þ svt � vxx ¼ 3�2bðv2vxÞx, (7)

where � ¼ v0=c0 plays the role of the Mach number, the positive constant s ¼ K‘ðr0t0Þ
�1=2 is the

(dimensionless) damping coefficient, and all primes have been omitted but are understood.
Before leaving this section the following remarks are in order. Firstly, we observe that with the damping

term omitted, Eq. (4) is equivalent to Ref. [20, Eq. (2)]. Secondly, it should be noted that in finite-amplitude
problems involving a finite-length string with fixed ends, some authors have replaced the quantity inside the ½ �
in Eq. (1) with �E ¼ ðL� SÞ=L, where E is the average Lagrangian strain [21], S is the length of the string in
general, and L is the length of the string in its undisturbed state [i.e., L ¼ minðSÞ]; see Refs. [17,21] and those
therein. And lastly, while the present study focuses on an externally damped string, it is appropriate to
mention that other authors have considered internally damped (i.e., viscoelastic) strings, for which the tension
is often described by the Kelvin–Voigt model (see, e.g., Refs. [22–24]).

3. Growth/decay of transverse acceleration waves

In carrying out the analytical part of our study, it is convenient to treat the acceleration waves as being
kinematic [25], rather than dynamic, wave phenomena. Mathematically, this means recasting Eq. (7) as a
system consisting of a ‘‘conservation/balance law’’ and a ‘‘flux’’ relation. That this is possible can be seen by
setting v ¼ Fx and q ¼ �Ft, where P ¼ ð0;Fðx; tÞ; 0Þ is the vector velocity potential (i.e., v ¼ r� P). Omitting
the details, it is not difficult to establish that Eq. (7) is equivalent to the quasilinear system

v

q

 !
t

þ B
v

q

 !
x

¼ �s
0

q

 !
; where B ¼

0 1

1þ 3b�2v2 0

 !
. (8)

Clearly, the eigenvalues of the coefficient matrix B are l1;2 ¼ �CðvÞ, where l1;2 are the roots of the quadratic
equation detðB� lI2Þ ¼ 0, I2 denotes the 2� 2 identity matrix, and CðvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3b�2v2

p
. Since l1;2 2 R and

l1al2, it follows that this system is also strictly hyperbolic [5], with characteristics defined by dx=dt ¼ �CðvÞ.
Let us now assume that v and q are both continuous jointly in x and t, but that vt suffers a jump

(discontinuity) across the plane t ¼ 0, i.e., at start-up. Due to the hyperbolic nature of system (8), planar
wavefronts, across which vt is discontinuous, begin propagating to the left and right along the x-axis at time
t ¼ 0þ, the speed of each with respect to an observe at rest denoted here by jU jða0Þ. With no loss in
generality, let us limit our attention to the right-traveling front, which we denote by x ¼ SðtÞ, and for
simplicity let us also take Sð0Þ ¼ 0. Mathematically, our assumptions can be restated as ½½v�� ¼ ½½q�� ¼ 0, but
½½vt��a0. Here, the amplitude of the jump in a function F ¼ F ðx; tÞ across S is defined as

½½F �� � F� � Fþ, (9)

where F� � limx!SðtÞ�F ðx; tÞ are assumed to exist and a ‘‘ þ’’ superscript corresponds to the region into which
S is advancing while a ‘‘�’’ superscript corresponds to the region behind S. Such a wavefront, which is
singular with respect to vt and propagating along the string, is termed a (transverse) acceleration wave [4].

Hence, observing that ½½vt�� is, at most, a function of only t, and assuming that the value of ½½vt�� is known at
time t ¼ 0, we now seek to analytically determine the value(s) of U and the behavior of ½½vt�� for all t40.

The first step in the process is employing Hadamard’s lemma [4,26]

d½½F ��
dt
¼ ½½Ft�� þU ½½Fx��, (10)

where the 1D displacement derivative d=dt gives the time-rate-of-change measured by an observer traveling
with S, along with the assumptions ½½v�� ¼ ½½q�� ¼ 0, to obtain the jump relations

½½vt�� þU ½½vx�� ¼ 0; ½½qt�� þU ½½qx�� ¼ 0. (11)

Next, we take the jumps of the two equations in system (8), which is permissible since the two
equations are assumed to hold on both sides of S. This yields, after using the formula for the jump of a
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product ½½FG�� ¼ Fþ½½G�� þ Gþ½½F �� þ ½½F ��½½G�� and simplifying, the two additional jumps equations

½½vt�� þ ½½qx�� ¼ 0; ½½qt�� þ f1þ 3b�2ðvþÞ2g½½vx�� ¼ 0, (12)

where we have again used the assumption ½½v�� ¼ 0. Our third step is to determine U. This is accomplished by
setting the determinant of the coefficient matrix of this system of (four) jumps equations to zero. As a result,
we obtain the propagation condition U2 � C2ðvþÞ ¼ 0, and thus it follows that U ¼ �CðvþÞ. Taking the
positive solution for obvious reasons, it is clear that S corresponds to the right-traveling wavefront
x ¼ CðvþÞt.

Using Hadamard’s lemma, system (8), and the jump relations given above, it is a straightforward process to
show that the acceleration jump amplitude satisfies the Bernoulli equation

da

dt
þ

s
2

� �
a�

3b�2vþ

1þ 3b�2ðvþÞ2

� �
a2 ¼ 0, (13)

where aðtÞ � ½½vt��. Solving using standard methods, the exact solution is readily found to be

aðtÞ ¼

að0Þ exp �
1

2
st

� �
; vþ ¼ 0;

a	

1� ½1� a	=að0Þ� exp
1

2
st

� � ; vþa0;

8>>>>><
>>>>>:

(14)

where

a	 ¼
s½1þ 3b�2ðvþÞ2�

6b�2vþ
. (15)

From Eq. (14), we see that, from a purely mathematical standpoint, the temporal evolution of aðtÞ can occur in
any one of the following five possible ways:
(I)
 If vþ ¼ 0, then aðtÞ ! 0 from above (resp. below) for að0Þ40 (resp. að0Þo0) as t!1.

(II)
 If vþa0 and að0Þ ¼ a	, then aðtÞ ¼ a	 for all tX0.

(III)
 If vþa0 and a	=að0Þ41, then aðtÞ ! 0 from above (resp. below) for sgnða	Þ ¼ 1 (resp. sgnða	Þ ¼ �1) as

t!1.

(IV)
 If vþa0 and að0Þa	o0, then aðtÞ ! 0 from above (resp. below) for sgnða	Þ ¼ �1 (resp. sgnða	Þ ¼ 1) as

t!1.

(V)
 If vþa0 and a	=að0Þ 2 ð0; 1Þ, then limt!t1jaðtÞj ¼ 1, where the breakdown time t1ð40Þ is given by

t1 �
2

s
ln

að0Þ

að0Þ � a	

� �
. (16)
Here, we observe that the constant a	, which is known as the critical amplitude [4] of the acceleration wave, is
such that sgnða	Þ ¼ sgnðvþÞ, where vþa0 is naturally assumed. Also, some authors (see, e.g., Ref. [27]) refer to
S as weak if jað0Þjoja	j and strong if jað0Þj4ja	j. Note too that when vþ is zero, aðtÞ reduces to the jump
amplitude expression predicted by the linear theory [26]. More importantly, however, is the fact that Case (II)
describes an unstable solution of Eq. (13) since any discrepancy, however small, in the value of að0Þ yields
either Case (III) or (V); see the Appendix.

4. Analytical and numerical results for a model system

4.1. Problem formulation and analytical results

To illustrate the most important analytical findings of Section 3, we now present a series of
numerical simulations based on the following simple (dimensionless) initial–boundary value problem (IBVP)
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involving Eq. (7):

vtt þ svt � vxx ¼ 3�2bðv2vxÞx; ðx; tÞ 2 ð0; 1Þ � ð�1; trÞ;

vð0; tÞ ¼ vþ � ð�1ÞpHðtÞ sinðOtÞ; vð1; tÞ ¼ vþ; totr; (17)

vðx; 0Þ ¼ vþ; vtðx; 0Þ ¼ 0; x 2 ð0; 1Þ;

where Hð
Þ is the Heaviside unit step function; the positive constant tr denotes the time of first reflection
off the boundary x ¼ 1, i.e., tr is the time required for S to complete its initial transit of the interval ð0; 1Þ;
the constants Oð40Þ and vþ denote the frequency of the sinusoidal excitation and the z-component of the
string’s initial velocity, respectively; and p 2 f0; 1g. Also, it should be noted when IBVP (17) is expressed in
terms of dimensional quantities, v0 and ‘, our characteristic speed and length from Section 1, represent the
magnitude of the sinusoidal excitation and the length of the string in the undeformed configuration,
respectively.

Using the fact that ½½vx�� ¼ �C
�1ðvþÞaðtÞ, which follows from Eq. (11)1, we can easily establish that an initial

jump in vt gives rise to a jump in vx of amplitude

½½vx�� ¼

Oð�1Þp exp �
1

2
st

� �
; vþ ¼ 0;

�a	½1þ 3b�2ðvþÞ2��1=2

1� ½1þ a	=Oð�1Þp� exp
1

2
st

� � ; vþa0;

8>>>>>><
>>>>>>:

(18)

where the initial jump amplitude is given by að0Þ ¼ Oð�1Þpþ1 [13] in the context of IBVP (17). Accordingly,
the breakdown time is now given by

t1 �
2

s
ln

Oð�1Þp

Oð�1Þp þ a	

� �
, (19)

which we observe is positive only if the conditions of Case (V) are satisfied.
4.2. Scheme construction

To simplify the analysis, we let v ¼ V þ vþ, where in terms of V we now have ½½V �� ¼ 0, ½½V x�� ¼ ½½vx��,
½½V t�� ¼ ½½vt��, and U ¼ Cð0; vþÞ, and where

CðV ; vþÞ � CðV þ vþÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3�2bðV þ vþÞ2

q
. (20)

Next, we modify the finite difference scheme used by Jordan and Puri [13], who studied the undamped,
i.e., s! 0, case of Eq. (7), to include a centered-difference representation of the damping term. This results in
the discretized equation of motion, now expressed in terms of V,

Vkþ1
m � 2V k

m þ V k�1
m

ðDtÞ2
þ s

V kþ1
m � V k�1

m

2ðDtÞ

� �
� ½1þ 3�2bðV k

m þ vþÞ2�
Vk

mþ1 � 2Vk
m þ Vk

m�1

ðDxÞ2

" #

¼ 3�2bðV k
m þ vþÞ

ðVk
mþ1 � Vk

m�1Þ
2

2ðDxÞ2

" #
. ð21Þ

Here, V k
m � V ðxm; tkÞ and the mesh points ðxm; tkÞ are given by xm ¼ mðDxÞ, for each m ¼ 0; 1; 2; . . . ;M,

and tk ¼ kðDtÞ, for each k ¼ 0; 1; 2; . . . ;K , where MX2 and KX2 are integers, and the (uniform)
spatial- and temporal-step sizes are Dx ¼ 1=M and Dt ¼ 1=K , respectively. On setting R ¼ ðDtÞ=ðDxÞ

and solving for Vkþ1
m , the most forward time-step approximation, we obtain the (explicit) finite
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difference scheme

V kþ1
m ¼

3

2
R2�2bðV k

m þ vþÞðVk
mþ1 � Vk

m�1Þ
2

	
þ R2½1þ 3�2bðVk

m þ vþÞ2�ðVk
mþ1 � 2V k

m þ V k
m�1Þ

þð2V k
m � V k�1

m Þ þ
s
2
ðDtÞV k�1

m



1þ

s
2
ðDtÞ

h i�1
, ð22Þ

which holds for each m ¼ 1; 2; 3; . . . ;M � 1 and k ¼ 1; 2; 3; . . . ;K � 1, and we note that the scheme’s overall
truncation error is O½ðDxÞ2 þ ðDtÞ2�.
4.3. Linearized problem: approximate solution

To highlight the effects of the nonlinearities, plots of the solution profile corresponding to the linearized
version of IBVP (17), where the equation of motion is the simple damped wave equation (see, e.g., Ref. [28]
and those therein)

vtt þ svt � vxx ¼ 0, (23)

are also presented. While the exact solution of the linearized problem can be readily determined using, e.g., the
Laplace transform method, for the purposes of the present study, however, the following simple expression,
which very closely approximates the former for t 2 ð0; trÞ, will be more than adequate:

V ðx; tÞ ¼ vðx; tÞ � vþ � ð�1Þpþ1Hðt� xÞ exp �
1

2
sx

� �
sin½Oðt� xÞ�. (24)
4.4. Numerical simulations

In Figs. 1–3 we have presented velocity profile plots corresponding to Cases (I), (II), and (V), respectively,
where the values taken here for O, R, and p are the same as those used in Figs. 1(a) and (b) of Ref. [13].
Additionally, the values of b that we employed were selected both because they fell within the range of such
values given in Ref. [17, Fig. 12] and they allow us to generate, using physically consistent values of �, figures
that clearly illustrate the above three cases. In particular, in Fig. 3 we chose � and b so that t1 would be less
than, but very close to, tr. Consequently, the (dimensionless) discontinuity distance,

x1 ¼ Cð0; vþÞt1 ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3�2bðvþÞ2

q
s

0
@

1
A ln

Oð�1Þp

Oð�1Þp þ a	

� �
, (25)

corresponding to Fig. 3 is less than, but very close to, the right boundary x ¼ 1. And we should point out that
s ¼ 1:0 was used in Figs. 1–3 simply because it allows the effects of attenuation on the solution profiles to be
easily observed.

The three time sequences given depict the evolution of the V vs. x solution profile during S’s initial transit of
the interval ð0; 1Þ. The boldface curves correspond to the numerical solution of IBVP (17) and were produced
from data sets computed by a simple algorithm which implemented the scheme given in Eq. (22) on a PC
running MATHEMATICA (Version 5.0). Interpolations between the points were accomplished using the cubic
splin routine built-in to this software package. In addition, so as to illustrate the behavior of ½½V x�� ¼ V�x , we
have in each sub-figure plotted straight line segments, whose slopes were computed using Eq. (18), through
the point ðx;V Þ ¼ ðSðtÞ; 0Þ. And to allow for comparisons of the nonlinear vs. linear versions of IBVP (17), we
have included plots of Eq. (24) as the broken curves.

Fig. 1 is plotted for vþ ¼ 0 and corresponds to Case (I), where the amplitude of S experiences exponential
decay over time. Here, we see that the propagation speed U ¼ Cð0; 0Þ ¼ 1 of S, as well as its amplitude ½½Vx��,
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Fig. 1. V vs. x for p ¼ 1, vþ ¼ 0, � ¼ 0:05, b � 140:85, s ¼ 1:0, O ¼ p, Cð0; 0Þ ¼ 1:0, Dx ¼ 1=2000, Dt ¼ 1=4000, and R ¼ 1=2. (a):
t ¼ 0:25, (b): t ¼ 0:50, (c): t ¼ 0:70, and (d): t ¼ 0:82. Bold: numerical solution of IBVP (17). Broken: Eq. (24). Thin-solid: tangent line at

x ¼ SðtÞ with slope given by Eq. (18).
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Fig. 2. V vs. x for p ¼ 1, vþ ¼ 0:6, � ¼ 0:03, b � 108:62, s ¼ 1:0, O ¼ a	 ¼ p, Cð0; 0:6Þ � 1:0515, Dx ¼ 1=2000, Dt ¼ 1=4000, and

R ¼ 1=2. (a): t ¼ 0:25, (b): t ¼ 0:50, (c): t ¼ 0:70, and (d): t ¼ 0:82. Bold: numerical solution of IBVP (17). Broken: Eq. (24). Thin-solid:

tangent line at x ¼ SðtÞ with slope given by Eq. (18).
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Fig. 3. V vs. x for p ¼ 1, vþ ¼ 0:6, � ¼ 0:05, b � 140:85, s ¼ 1:0, O ¼ p, Cð0; 0:6Þ � 1:1749, a	 � 1:0889, t1 � 0:8511, x1 � 0:9999,
Dx ¼ 1=2000, Dt ¼ 1=4000, and R ¼ 1=2. (a): t ¼ 0:25, (b): t ¼ 0:50, (c): t ¼ 0:70, and (d): t ¼ 0:82. Bold: numerical solution of IBVP (17).

Broken: Eq. (24). Thin-solid: tangent line at x ¼ SðtÞ with slope given by Eq. (18).
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are equal in the nonlinear and linear solution curves, as they should be for vþ ¼ 0. We also see that both
solution curves are, as expected, attenuated.

From Fig. 2 we observe, as predicted in Case (II), that the slope of the profile at the wavefront is constant,
specifically, ½½V x�� ¼ V�x ¼ �p. Note also that while the propagation speed of S corresponding to the nonlinear
solution is greater than that of the linear solution, i.e., greater than unity, the former profile does not appear to
undergo distortion, but like its linear counterpart it clearly suffers attenuation.

In contrast, Fig. 3, which captures �95% of the amplitude blow-up predicted in Case (V), clearly shows that
there is a rapid increase in j½½Vx��j as t! t1, along with attenuation of the solution curve. The former is, of
course, due to the amplitude-dependence of the wave speed (see Eq. (20), where Cð0; 0:6Þ41 is evident from a
comparison of the nonlinear and linear profiles, while the latter results from the (damping) term vt. What is
most interesting, however, can be seen in the last frame of Fig. 3. There, the profile appears to be preparing to
‘‘break,’’ in much the same way as in the corresponding undamped case (see Ref. [13, Fig. 1(b)]). Such
behavior, which is only possible when vþa0, strongly suggests that a vortex sheet is forming.

Finally, because of the relatively slow decay involved, whereby significant variations in the waveform do not
occur over the course of S’s initial transit, sequences for Cases (III) and (IV) have been omitted.

5. Summary and discussion

We have examined the evolution of transverse acceleration waves on a nonlinear string whose motion takes
place in a resisting medium. It was shown that the primary effect of external damping is to increase, with
respect to the undamped case, the rate at which growth and/or decay of the wave’s amplitude takes place.
Specifically, with no damping the rate is algebraic [13]; but when external damping is included the rate
becomes exponential. In addition, we found that vþ must be nonzero if finite-time blow-up is to be possible, a
situation which also arises in shear flows of certain nonlinear viscoelastic fluids [6]. In contrast, taking vþ ¼ 0
yields a jump amplitude identical to that of Eq. (23), the linearized equation of motion (see Eq. (14) and
Case (I)). What’s more, we showed that with external damping included, the constant amplitude solution
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aðtÞ ¼ a	 (see Case (II)) requires vþa0 and að0Þ ¼ a	, which is unlike the undamped case where such a solution
is obtained by taking vþ ¼ 0 [13]. However, we also showed that aðtÞ ¼ a	 is an unstable equilibrium solution
of Eq. (13); see the Appendix.

Lastly, a series of numerical simulations of acceleration waves on a finite string was used to graphically
illustrate Cases (I), (II), and (V). It was shown that, with regard to the V vs. x solution profiles, the main effect
of external damping here was the introduction of attenuation.
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Appendix A. Qualitative analysis of jump amplitude equation

Although we have obtained the exact solution of Eq. (13), it is nevertheless instructive to investigate the
steady-state behavior of the acceleration wave amplitude using qualitative methods. To this end, let us (briefly)
re-examine the stability characteristics of the equilibrium solutions ā ¼ f0; a	g, which correspond to the roots
of the quadratic equation

ā 1�
ā

a	

� �
¼ 0, (A.1)

where we now regarded a	 as a function of vþ (see Eq. (15)).
Referring the reader to the excellent books by Hale and Koc-ak [29] and Strogatz [30] for the details, it can

be readily established that

ā ¼

0
Stable : vþa0;

Unstable : ;;

(

a	
Stable : ;;

Unstable : vþa0;

(
8>>>>><
>>>>>:

(A.2)

where we note that vþ ¼ 0 has been excluded.
The stability diagram presented in Fig. A1, which was generated by plotting a	 vs. vþ (bold-broken curves)

along with the zero solution (solid bold lines), clearly illustrates the situation described by Eq. (A.2). In particular,
we see that ā ¼ a	 is always unstable while ā ¼ 0 is always stable.2 Additionally, we observe that a bifurcation
does not occur; i.e., there is no ‘‘swapping’’ of stability between the two equilibria. Note also the Roman numerals
appearing in Fig. A1; they are used to denote the regions/curves corresponding to Cases (II)–(V).

And for completeness, we observe that the (bold-broken) curves that appear in the 3rd and 1st Quadrants of
Fig. A1 have as their stationary points

vþ1;2 ¼
�1

�
ffiffiffiffiffiffi
3b

p , (A.3)

respectively. Consequently, it can be shown that

max
vþo0
ða	Þ ¼ a	 vþ¼vþ

1
¼
�s

�
ffiffiffiffiffiffi
3b

p o0

����� , (A.4)

which corresponds to the curve in the 3rd Quadrant, and

min
vþ40
ða	Þ ¼ a	 vþ¼vþ

2
¼

s

�
ffiffiffiffiffiffi
3b

p 40

����� , (A.5)
2More precisely, an asymptotically stable, hyperbolic equilibrium point for all vþa0; see Ref. [29].
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II
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Fig. A1. Stability diagram for the acceleration wave amplitude, where vþa0 is assumed. Here, the two bold-broken curves correspond to

Case (II); the regions in the 1st and 3rd Quadrants that are bounded by these curves and the coordinate axes correspond to Case (III), with

the remaining regions of these two quadrants corresponding to Case (V); and the entire 2nd and 4th Quadrants correspond to Case (IV).

Bold-solid: stable equilibria. Bold-broken: unstable equilibria.
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which corresponds to the curve in the 1st Quadrant. Thus, we see that the critical amplitude, which is never
zero, is restricted to one of two semi-infinite intervals, namely,

a	 2

s

�
ffiffiffiffiffiffi
3b

p ;þ1

" !
; vþ40;

�1;
�s

�
ffiffiffiffiffiffi
3b

p
 #

; vþo0:

8>>>>><
>>>>>:

(A.6)
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[4] P.J. Chen, Growth and decay of waves in solids, in: S. Flügge, C. Truesdell (Eds.), Handbuch der Physik, Vol. VIa/3, Springer, Berlin,

1973, pp. 303–402.

[5] J.D. Logan, An Introduction to Nonlinear Partial Differential Equations, Wiley, New York, 1994 (Chapter 5).

[6] B.D. Coleman, M.E. Gurtin, On the stability against shear waves of steady flows of non-linear viscoelastic fluids, Journal of Fluid

Mechanics 33 (1968) 165–181.

[7] B.D. Coleman, M.E. Gurtin, Growth and decay of discontinuities in fluids with internal state variables, Physics of Fluids 10 (1967)

1454–1458.

[8] Y.B. Fu, N.H. Scott, The transition from acceleration wave to shock wave, International Journal of Engineering Science 29 (1991)

617–624.

[9] I. Müller, T. Ruggeri, Extended thermodynamics, in: C. Truesdell (Ed.), Springer Tracts in Natural Philosophy, Vol. 37, Springer,

New York, 1993, pp. 148–152.

[10] G. Saccomandi, Acceleration waves in a thermo-microstretch fluid, International Journal of Non-Linear Mechanics 29 (1994) 809–817.

[11] R. Quintanilla, B. Straughan, A note on discontinuity waves in type III thermoelasticity, Proceedings of the Royal Society A 460

(2004) 1169–1175.

[12] P.M. Jordan, C.I. Christov, A simple finite difference scheme for modeling the finite-time blow-up of acoustic acceleration waves,

Journal of Sound and Vibration 281 (2005) 1207–1216.

[13] P.M. Jordan, A. Puri, Growth/decay of transverse acceleration waves in nonlinear elastic media, Physics Letters A 341 (2005)

427–434.

[14] I. Christov, P.M. Jordan, C.I. Christov, Nonlinear acoustic propagation in homentropic perfect gases: a numerical study, Physics

Letters A 353 (2006) 273–280.



ARTICLE IN PRESS
P.M. Jordan / Journal of Sound and Vibration 311 (2008) 597–607 607
[15] M. Ciarletta, B. Straughan, Poroacoustic acceleration waves, Proceedings of the Royal Society A 462 (2006) 3493–3499.

[16] J. Jaisaardsuetrong, B. Straughan, Thermal waves in a rigid heat conductor, Physics Letters A 366 (2007) 433–436.

[17] D.W. Oplinger, Frequency response of a nonlinear stretched string, The Journal of the Acoustical Society of America 32 (1960)

1529–1538.

[18] G.F. Carrier, On the non-linear vibration problem of the elastic string, Quarterly of Applied Mathematics 3 (1945) 157–165.

[19] J.D. Cole, C.B. Doughererty, J.H. Huth, Constant-strain waves in strings, Journal of Applied Mechanics (Transactions of the ASME)

(1953) 519–522.

[20] E.W. Lee, Non-linear forced vibrations of a stretched string, British Journal of Applied Physics 8 (1957) 411–413.

[21] I.-S. Liu, M.A. Rincon, Effects of moving boundaries on the vibrating elastic string, Applied Numerical Mathematics 47 (2003)

159–172.

[22] J.M. Greenberg, R.C. MacCamy, V.J. Mizel, On the existence, uniqueness, and stability of solutions of the equation

s0ðuxÞuxx þ luxtx ¼ r0utt, Journal of Mathematics and Mechanics 17 (1968) 707–728.

[23] G.E. Mase, Continuum Mechanics, McGraw-Hill, New York, 1970 (Chapter 9).

[24] R.B. Guenther, J.W. Lee, Partial Differential Equations of Mathematical Physics and Integral Equations, Dover, Mineola, NY, 1996,

pp. 206–208.

[25] G.B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974, pp. 26–30.

[26] D.R. Bland, Wave Theory and Applications, Oxford University Press, Oxford, 1988.

[27] B.D. Coleman, J.M. Greenberg, M.E. Gurtin, Waves in materials with memory V. On the amplitude of acceleration waves and mild

discontinuities, Archive for Rational Mechanics and Analysis 22 (1966) 333–354.

[28] R.E. Mickens, P.M. Jordan, A positivity-preserving nonstandard finite difference scheme for the damped wave equation, Numerical

Methods for Partial Differential Equations 20 (2004) 639–649.

[29] J. Hale, H. Koc-ak, Dynamics and Bifurcations, Springer, New York, 1991 (Chapters 1–2).

[30] S.H. Strogatz, Nonlinear Dynamics and Chaos, Addison–Wesley, Reading, MA, 1994 (Chapters 2–3).


	On the growth and decay of transverse acceleration waves �on a nonlinear, externally damped string
	Introduction
	Equation of motion
	Growth/decay of transverse acceleration waves
	Analytical and numerical results for a model system
	Problem formulation and analytical results
	Scheme construction
	Linearized problem: approximate solution
	Numerical simulations

	Summary and discussion
	Acknowledgments
	Qualitative analysis of jump amplitude equation
	References


